首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5121篇
  免费   334篇
  国内免费   88篇
  2023年   32篇
  2022年   38篇
  2021年   61篇
  2020年   110篇
  2019年   156篇
  2018年   182篇
  2017年   106篇
  2016年   97篇
  2015年   97篇
  2014年   240篇
  2013年   263篇
  2012年   179篇
  2011年   189篇
  2010年   110篇
  2009年   134篇
  2008年   176篇
  2007年   225篇
  2006年   172篇
  2005年   174篇
  2004年   106篇
  2003年   104篇
  2002年   87篇
  2001年   61篇
  2000年   51篇
  1999年   51篇
  1998年   62篇
  1997年   47篇
  1996年   35篇
  1995年   33篇
  1994年   41篇
  1993年   45篇
  1992年   39篇
  1991年   35篇
  1990年   37篇
  1989年   41篇
  1988年   28篇
  1987年   34篇
  1985年   129篇
  1984年   260篇
  1983年   207篇
  1982年   257篇
  1981年   246篇
  1980年   165篇
  1979年   159篇
  1978年   132篇
  1977年   106篇
  1976年   62篇
  1975年   42篇
  1974年   34篇
  1973年   28篇
排序方式: 共有5543条查询结果,搜索用时 640 毫秒
981.
Diverse subtypes of voltage-gated sodium channels (VGSCs) have been found throughout tissues of the brain, muscles and the heart. Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch (BmK) act as sodium channel-specific modulators and have therefore been widely used to study VGSCs. α-type neurotoxins, named BmK I, BmK αIV and BmK abT, bind to receptor site-3 on VGSCs and can strongly prolong the inactivation phase of VGSCs. In contrast, β-type neurotoxins, named BmK AS, BmK AS-1, BmK IT and BmK IT2, occupy receptor site-4 on VGSCs and can suppress peak currents and hyperpolarize the activation kinetics of sodium channels. Accumulating evidence from binding assays of scorpion neurotoxins on VGSCs, however, indicate that pharmacological sensitivity of VGSC subtypes to different modulators is much more complex than that suggested by the simple α-type and β-type neurotoxin distinction. Exploring the mechanisms of possible dynamic interactions between site 3-/4-specific modulators and region- and/or species-specific subtypes of VGSCs would therefore greatly expand our understanding of the physiological and pharmacological properties of diverse VGSCs. In this review, we discuss the pharmacological and structural diversity of VGSCs as revealed by studies exploring the binding properties and cross-competitive binding of site 3- or site 4-specific modulators in VGSC subtypes in synaptosomes from distinct tissues of diverse species.  相似文献   
982.
Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO2) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO2 with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO2 on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO2, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO2 alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.  相似文献   
983.
Recently, we have reported that the CacyBP/SIP protein binds ERK1/2 (Kilanczyk et al., BBRC, 2009). In this work we show that CacyBP/SIP exhibits a phosphatase activity toward ERK1/2 kinases while its E217K mutant does not. The Km and Vmax values established for a standard phosphatase substrate, p-NPP, are 16.9 ± 3.6 mM and 4.3 ± 0.4 μmol/min, respectively. The CacyBP/SIP phosphatase activity is decreased by okadaic acid (IC50 = 45 nM). Our experimental results are supported by a theoretical analysis which revealed important sequence similarities between CacyBP/SIP and the phosphatase-like proteins as well as certain MAP kinase phosphatases.  相似文献   
984.
Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca++ depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca++ could bind the Nav1.1 C-terminal region with micromolar affinity.  相似文献   
985.
Naphthoquinone derivatives have been reported to possess various pharmacological activities, such as antiplatelet, anticancer, antifungal, and antiviral properties. In this study, we investigated the effects of a newly-synthesized naphthoquinone derivative, 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone (2-decylamino-DMNQ), on VSMC proliferation and examined the molecular basis of the underlying mechanism. In a dose-dependent manner, 2-decylamino-DMNQ inhibited PDGF-stimulated VSMC proliferation with no apparent cytotoxic effect. While 2-decylamino-DMNQ did not affect PDGF-Rβ or Akt, it did inhibit the phosphorylation of Erk1/2 and PLCγ1 induced by PDGF. Moreover, 2-decylamino-DMNQ suppressed DNA synthesis through the arrest of cell cycle progression at the G0/G1 phase, including the suppression of pRb phosphorylation and a decrease in PCNA expression, which was related to the downregulation of cell cycle regulatory factors, such as cyclin D1/E and CDK 2/4. It was demonstrated that both U0126, an Erk1/2 inhibitor, and U73122, a PLCγ inhibitor, increased the proportion of cells in the G0/G1 phase of the cell cycle. Thus, these results suggest that 2-decylamino DMNQ has an inhibitory effect on PDGF-induced VSMC proliferation and the mechanism of this action is through cell cycle arrest at the G0/G1 phase. This may be a useful tool for studying interventions for vascular restenosis in coronary revascularization procedures and stent implantation.  相似文献   
986.
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E1 osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair.  相似文献   
987.
Passage across epithelial cell sheets is the first step in drug absorption. Tight junctions (TJs) are located between adjacent epithelial cells and seal the intercellular space preventing leakage of solutes. Claudin, a tetra-transmembrane protein family, is a pivotal functional and structural component of the TJ barrier. Modulation of the claudin-based TJ seal is a strategy for mucosal drug absorption. We previously found that a claudin-4 binder, a C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE194), was a modulator of the TJ seal and a potent mucosal absorption enhancer. In the present study, we attempted to improve claudin-4 binders by modification of C-CPE194. Substitution of Asn at position 309 and Ser at position 313 with Ala increased the affinity to claudin-4 by 9.9-fold as compared to C-CPE194. Deletion of 10 amino acids in the N-terminal domain of the double-alanine-substituted mutant increased affinity to claudin-4 by 23.9-fold as compared to C-CPE194. These C-CPE194 mutants reversibly modulated the TJ seal in human intestinal epithelial cell sheets. The N-terminal-truncated mutant was the most potent modulator of the TJ seal. These findings indicate that the C-CPE mutant may be a promising lead for the development of a clinical TJ modulator.  相似文献   
988.
In eukaryotes, membrane and soluble proteins of the secretory pathway enter the endoplasmic reticulum (ER) after synthesis in an unfolded state. Directly after entry, most proteins are modified with glycans at suitable glycosylation sites and start to fold. A protein that cannot fold properly will be degraded in a process called ER associated degradation (ERAD). Failures in ERAD, either by loss of function or by premature degradation of proteins, are a cause of severe diseases. Therefore, the search for novel ERAD components to gain better insight in this process is of high importance. Carbohydrate trimming is a relevant process in ER quality control. In this work a novel putative yeast mannosidase encoded by the open reading frame YLR057W was identified and named Mnl2. Deletion of MNL2 diminished the degradation efficiency of misfolded CPY* in the absence of the cognate mannosidase Mnl1, indicating a specific role in ERAD.  相似文献   
989.
Research into muscle atrophy and hypertrophy is hampered by limitations of the available experimental models. Interpretation of in vivo experiments is confounded by the complexity of the environment while in vitro models are subject to the marked disparities between cultured myotubes and the mature myofibres of living tissues. Here we develop a method (PhAct) based on ex vivo maintenance of the isolated myofibre as a model of disuse atrophy, using standard microscopy equipment and widely available analysis software, to measure f-actin content per myofibre and per nucleus over two weeks of ex vivo maintenance. We characterize the 35% per week atrophy of the isolated myofibre in terms of early changes in gene expression and investigate the effects on loss of muscle mass of modulatory agents, including Myostatin and Follistatin. By tracing the incorporation of a nucleotide analogue we show that the observed atrophy is not associated with loss or replacement of myonuclei. Such a completely controlled investigation can be conducted with the myofibres of a single muscle. With this novel method we can distinguish those features and mechanisms of atrophy and hypertrophy that are intrinsic to the muscle fibre from those that include activities of other tissues and systemic agents.  相似文献   
990.
Skin is constantly exposed to surfactants which compromise the essential barrier function of normal healthy skin. To model the interactions of surfactants with the barrier lipids of the stratum corneum (SC), it is essential to develop in vitro and in vivo quantitative measurement methods to predict, evaluate, and demonstrate the effect of the different surfactant chemistries and technologies on skin. In the current work, in vitro water vapor uptake and surfactant absorption onto skin lipid model films were quantitatively studied using a technique based on the piezoelectric effect, the quartz crystal microbalance (QCM). This approach is straightforward and reliable in providing subtle surface/interface related mass change information with high resolution and sensitivity. The results show that barrier properties of the lipid model system may be damaged by surfactant absorption, as well as by long-term water exposure due to alterations to the lipid film structure. Surfactant absorption is found to be concentration dependent even beyond its critical micelle concentration (CMC). QCM results for different surfactant systems are consistent with reported clinical data in showing that clinically milder surfactants (SLES) do not perturb the film as much as clinically harsh surfactants (SDS).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号